top of page

PUBLICATIONS

ALL

Since  2018

Citations       5673               2226
 

h-index           38                    24
 

i10-index         79                    58

The following list contains publications from the past 5 years.
 
A List of ALL publications can be found here.

Vascular regenerative cells in cardiometabolic disease. (2023)

BakBak E, Krishnaraj A, Park B, Verma, S, Hess DA. Vascular regenerative cells in cardiometabolic disease. (2023) Current Opinion in Cardiology. In Press August 2023.

 

Empagliflozin improves circulating vascular regenerative cell content in people without diabetes. (2023)

Bakbak E, Verma S, Krishnaraj A, Quan A, Puar P, Wang C-H, Mason T, Verma R, Terenzi DC, Rotstein OD, Yan AT, Connelly KA, Teoh H, Mazer CD, Hess DA. Empagliflozin improves circulating vascular regenerative cell content in people without diabetes. (2023) American Journal of Physiology – Heart and Circulatory Physiology, In Press August 2023.

 

Restoration of blood vessel regeneration in the era of combination SGLT2i and GLP-1RA therapy for diabetes and obesity. (2023)

Terenzi DC, Bakbak E, Teoh H. Puar P, Rotstein, OD, Cosentino F, Verma, S, Hess DA. Restoration of blood vessel regeneration in the era of combination SGLT2i and GLP-1RA therapy for diabetes and obesity. (2023) Cardiovascular Research. In Press, June 5, 2023.

​

Vascular repair and regeneration in cardiometabolic diseases. (2022)

Hess DA, Verma S, Bhatt D, Bakbak E, Terenzi DC, Puar P, Cosentino F. Vascular repair and regeneration in cardiometabolic diseases. (2022) European Heart Journal 43(6): 450-459.

​

Lessons from bariatric surgery: Can increased GLP-1 enhance vascular repair during cardiometabolic-based chronic diseases. (2021)

Bakbak E, Terenzi DC, Trac JZ, Teoh H, Quan A, Glazer SA, Al-Omran M, Verma S, and Hess DA. Lessons from bariatric surgery: Can increased GLP-1 enhance vascular repair during cardiometabolic-based chronic diseases. (2021) Reviews in Endocrinology & Metabolic Disorders, 22(4):1171-1188.

​

Heal Thyself: SGLT2-inhibition limits regenerative cell exhaustion and heals damaged vessels. (2021)

Hess DA, Terenzi DC, Verma S. Heal Thyself: SGLT2-inhibition limits regenerative cell exhaustion and heals damaged vessels. (2021) Diabetes 7(8):1620-1622.

​

Decellularized adipose tissue scaffolds guide hematopoietic differentiation and stimulate vascular regeneration in a hindlimb ischemia model. (2021)

LeClerc CJ, Cooper TT, Bell, GI, Lajoie GA, Flynn LE, Hess DA. Decellularized adipose tissue scaffolds guide hematopoietic differentiation and stimulate vascular regeneration in a hindlimb ischemia model. (2021) Biomaterials 274:120867. Epub May 8.

​

Exploring the clinical implications of Wnt-signaling in enucleated erythrocytes. (2021)

Terenzi DC, Verma S, Hess DA. Exploring the clinical implications of Wnt-signaling in enucleated erythrocytes. (2021) Atherosclerosis, Thrombosis and Vascular Biology. 41(5):1654-1656.

​

Isolation and characterization of circulating pro-vascular progenitor cell subsets from human whole blood samples. (2021)

Terenzi TC, Bakbak E, Trac JZ, Al-Omran M, Quan A, Teoh; H, Verma S, Hess DA. Isolation and characterization of circulating pro-vascular progenitor cell subsets from human whole blood samples. (2021) STAR Protocols 2(1): 100311.

​

Ultrafiltration and injection of islet regenerative stimuli secreted by pancreatic mesenchymal stromal cells. (2021)

Cooper TT, Sherman SE, Bell GI, McRae DM, Ma J, Lagugne-Labarthet F, Pasternak S, Lajoie GA, Hess DA. Ultrafiltration and injection of islet regenerative stimuli secreted by pancreatic mesenchymal stromal cells. (2021) Stem Cells and Development. 30(5):247-264.

​

Vascular risk reduction in obesity through reduced granulocyte burden and improved angiogenic monocyte content after bariatric surgery. (2020)

Hess DA, Trac JZ, Glazer SA, Terenzi DC, Quan A, Teoh H, Al-Omran M, Bhatt DL, Mazer CD, Rotstein OD, Verma S. Vascular risk reduction in obesity through reduced granulocyte burden and improved angiogenic monocyte content after bariatric surgery. (2020) Cell Reports Medicine, 1(2): 100018.

​

Purification and characterization of CD34-expressing cell subsets following ex vivo expansion of umbilical cord blood-derived endothelial colony forming cells. (2020)

​Sherman SE, Kuljanin M, Cooper TT, Lajoie GA, Hess DA. Purification and characterization of CD34-expressing cell subsets following ex vivo expansion of umbilical cord blood-derived endothelial colony forming cells. (2020) Stem Cells and Development, 29(14): 895-910.

​​

SGLT-2 inhibitors and regenerative cell exhaustion. (2020)

​Hess DA, Terenzi DC, Verma S. SGLT-2 inhibitors and regenerative cell exhaustion. (2020) Cell Metabolism, 31(5):884-885.

​

The SGLT2 inhibitor empagliflozin reduces mortality and prevents progression in experimental pulmonary hypertension. (2020)

Chowdhury B, Luu AZ, Luu VZ, Golam Kabir M, Pan Y, Teoh H, Quan A, Sabongui S, Al-Omran M, Bhatt D, Mazer CD, Connelly KA, Verma S, Hess DA. The SGLT2 inhibitor empagliflozin reduces mortality and prevents progression in experimental pulmonary hypertension. (2020) Biochemical and Biophysical Research Communications. 524(1):50-56.​

​​

Characterization of a Vimentinhigh / Nestinhigh proteome and tissue regenerative secretome generated by human pancreas-derived multipotent stromal cells. (2020)

​Cooper TT, Sherman SE, Bell GI, Ma J, Kuljanin M, Jose SE, Lajoie GA, Hess DA. Characterization of a Vimentinhigh / Nestinhigh proteome and tissue regenerative secretome generated by human pancreas-derived multipotent stromal cells. (2020) Stem Cells, 38(5): 666-682.

​

SGLT2 inhibition with empagliflozin increases circulating provascular progenitor cells in people with type 2 diabetes mellitus. (2019)

Hess DA, Terenzi DC, Trac JZ, Quan A, Mason T, Al-Omran M, Bhatt DL, Dhingra N, Rotstein OD, Leiter LA, Zinman B, Sabongui S, Yan AT, Teoh H, Mazer CD, Connelly KA, Verma S. SGLT2 inhibition with empagliflozin increases circulating provascular progenitor cells in people with type 2 diabetes mellitus. (2019) Cell Metabolism, 30(4):609-613.

​​

Bronchioalveolar stem cells: the crossroads of lung regeneration. (2019)

​Cooper TT and Hess DA. Bronchioalveolar stem cells: the crossroads of lung regeneration. (2019) Biotarget, 3:8.

​

​

Vascular regenerative cell exhaustion in diabetes: Translational opportunities to mitigate cardiometabolic risk. (2019)

Terenzi DC, Trac JZ, Teoh H, Gerstein HC, Bhatt DL, Al-Omran M, Verma S, Hess DA. Vascular regenerative cell exhaustion in diabetes: Translational opportunities to mitigate cardiometabolic risk. (2019) Trends in Molecular Medicine, 25(7): 640-655.

​​

​​

​Human multipotent stromal cell secreted effectors accelerate islet regeneration. (2019)

​Kuljanin M, Elgamal RM, Bell GI, Xenocostas A, Lajoie GA, Hess DA. Human multipotent stromal cell secreted effectors accelerate islet regeneration. (2019) Stem Cells, 37(4): 516-528.

​​

​​

​​​

bottom of page